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Abstract—In our paper we present an abstract object ori-
ented runtime system that helps to develop scientific application
for new hererogenous architecture based on multi-node of
multi-core processors enhanced with accelerator boards. Its
architecture based on abstract concepts enables to follow hard-
ware technology by extending them with new implementations
modeling new hardware components, while limiting the impacts
on existing application architecture or in the developpement
of high level generative framework based on Domain spe-
cific language. We validate our approach with a multiscale
algorithm to solve partial derivative equations that we have
implemented with this runtime system and benchmarked on
various heterogeneous hardware architecture.
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I. INTRODUCTION

The trend in hardware technology is to provide hierachical
architecture with different levels of memory, process units
and connexion beween ressources, using either accelerating
boards or by the means of hybrid heterogeneous manycore
processors. The complexity to handle such architecture has
considerably increased. The heterogeneity introduces serious
chalenges in term of memory coherency, data transfer be-
tween local memories, load balancing between computation
units. Various approaches have appeared to manage the dif-
ferent levels of parallelism : different programming models,
programming environnements, schedulers, data management
solutions and runtime systems like Charm++[3], StarSS[1],
StarPU[2] or XKaapi[4] that provide higher-level software
layers with convenient abstractions which permit to design
portable algorithms without having to deal with low-level
concerns.

In scientific computing, new methods have emerged, like
multiscale methods to solve partial derivative equations.
These methods, when they are based on algorithms pro-
viding a great amount of independant computations, are
good candidates to perform on new hardware technology.
However, using often complex numerical concepts, they are
developped by programmers that cannot deal with hardware
complexity. Most of the existing programming approaches
remain often too poor to manage the different levels of
parallism. Runtime system solutions that expose convenient
and portable abstraction to a high-level compiling environ-
nements and to highly optimized libraries are interesting as

they enable end users to develop complex numerical algo-
rithms hiding the low level concerns of data management and
task scheduling. Such layer provides a unified view of all
processing units, enables various parallelism models with an
expressive interface that bridges the gap between hardware
stack and software stack.

In our paper we propose an abstract object oriented run-
time system that enables to handle the variety of new hybrid
architectures and to follow the fast evolution of hardware
design. Its architecture is based on the abstract concepts
like Tasks, Data management, Scheduler and Executing
driver that enables various extentions by the mean of new
implementations modeling new hardware components. We
mean by abstract the fact that the concepts of our runtime
system are defined as requirements on the C++ types that
represent them. The purpose is to allow developper to write
programs with abstract types independantly of the underly-
ing objects implementation. This solution has the advantage
to limit the impact of the choice of the runtime system
implementation on the application architectures, to clearly
separate application evolution from hardware one. Finally,
in the contrary of some existing runtime system solutions,
it enable to enhance specific part of existing applications
without needing to restructure the all application architecture
and to re-write from scratch often complex algorithms. We
validate our approach on a multiscale methods to solve
partial derivative equations : we have developped them with
our runtime system model and various implementations of
its abstract concepts and benchmarked on various hetero-
geneous archictectures with multi SMP nodes, multi-core
processors and with multi accelerated boards.

II. AN ABSTRACT OBJECT ORIENTED RUN-TIME
SYSTEM MODEL

A. Contribution

In order to enable scientific developpers to implement
their methods in a transparent way, we propose a runtime
system layer on top of which they can write source code
that performs efficiently on new heterogeneous hardware
architectures. Our approach is to provide an abstract object
oriented runtime system model that enables developpers to
handle, in a unified way, different levels of parallelism and



different grain sizes. Like for most existing Runtime System
frameworks, the proposed model is based on:

• an abstract architecture model that enables us to de-
scribe in a unified way most of nowadays and future
heterogeneous architectures with static and runtime
information on the memory, network and computational
units;

• an unified parallel model programing based on tasks
that enables us to implement parallel algorithms for
different architectures;

• an abstract data management model to describe the
processed data, its placement in the different memory
and the different way to access to it from the different
computation units.

The main contribution with respect to existing frameworks
is to propose an abstract archictecture for the model based
on abstract concepts , where we define Concept as set of
requirements for types of objects that implement specific
behaviours. Most of the abstractions of our Runtime system
models are defined as requirements for C++ structures.
Algorithms are then written with some abstract types which
must conform to the concepts they implement. This approach
has several advantages:

1) it enables to clearly separate the implementation of
the numerical layer from the implementation of the
RunTimeSystem layer;

2) it enables to take into account the evolution hardware
architecture with new extensions, new concepts im-
plementation, limiting in that way the impact on the
numerical layer;

3) it enables the benchmark of competiting implementa-
tions of each concept with various technologies, which
can be based on existing research frameworks like
StarPU which already provides advanced implementa-
tion of our concepts;

4) it enables us to design a non intrusive library, which
unlike most of existing framewok, does not constraint
the architecture of the final applications. One can thus
enhance any part of any existing applications with
our framework, re-using existing classes or functions
without needing to migrate the whole application archi-
tecture to our formalism. This issue is very important
because often legacy codes cannot take advantage of
new hybrid hardware because most of existing pro-
gramming environnements make the migration of such
applications painful;

5) finaly the proposed solution does not need any specific
compiler tools and does not have any impact on the
project compiling tool chain.

In this section we present the different abstractions on
which the proposed framework relies. We detail the concepts
we have proposed to modelize these abstractions. We illus-
trate them by proposing different types of implementation

with various technolgies. We study how the proposed solu-
tion enables us to address seamlessly heterogeneous archi-
tectures and to manage the available computation ressources
to optimize the application performance.

B. An abstract hybrid architecture model

The purpose of this abstract hybrid architecture model
is to provide a unified way to describe hybrid hardware
architecture and to specify the important features that
enable to choose at compile time or at run time the best
strategies to ensure performance. Such an architecture
model has been already developped in the project HWLOC
(Portable Hardware Locality)[5] which provides a portable
abstraction (across OS, versions, architectures, ...) of the
hierarchical topology of modern architectures, including
NUMA memory nodes, sockets, shared caches, cores and
simultaneous multithreading. It also gathers various system
attributes such as cache and memory information as well
as the locality of I/O devices such as network interfaces,
InfiniBand HCAs or GPUs. We propose an architecture
model, based on the HWLOC framework. An architecture
description is divided into two part, a static part grouping
static information which can be used at compile-time and
a dynamic part with dynamic information used at run-time.
The information is modelized with abstractions like system
representing the whole hardware system, machine for
a set of processors and memory with cache coherency,
node modeling a NUMA node, a set of processors around
the memory on which the processors can directly access,
cache for cache memory (L1i, L1d, L2, L3,. . . ), core
for computation units or pu for processing unit . . . The
static information is represented by tag structures and
string keys. They are organized in a tree structure where
each node has a tag representing a hardware component,
a reference to a parent node and a list of children nodes.
Tag structures are used in the generative framework at
compile time. For a target hardware architecture and with its
static description, it is possible to generate the appropriate
algorithms with the right optimisations. The dynamic
information is stored, in each node of the tree description,
with a property map associating keys representing dynamic
hardware attibutes, to values which are evaluated at
runtime, possibly using the HWLOC library. Theses values
form the runtime information which enables to instantiate
algoritms with dynamic optimization parameters like cache
memory sizes, stack_size the size of the memory
stack, nb_pu the maximum number of Process Units,
warp_size the size of a NVidia WARP (NVidia group of
synchronized threads) and max_thread_block_size
the maximum size of a NVidia thread block executed on
GP-GPUs, nb_core or nb_gpu the number of available
physical cores of CPUs or GPUs,. . . Such runtime features,
are useful parameters to optimize low level algorithms, in
particularly for CUDA or OpenCL algorithms for GP-GPUs.



C. An abstract unified parallel programming model

We propose an abstract unified parallel programming
model based on the main following abstractions:

• a task abstraction representing pieces of work, or
an algorithm that can be executed on a core or onto
accelerators asynchronously. A task can have various
implementations that can be executed more or less
efficiently on various computational units. Each imple-
mentation can be written in various low level languages
(C++, CUDA, OpenCL) with various libraries (BLAS,
CUBLAS) and various compilation optimizations (SSE
directives,. . . ). Tasks can be independent or organized
in direct acyclic graphs which represent algorithms.

• a data abstraction representing the data processed
by tasks. Data can be shared between tasks and have
multiple representations in each local memory device.

• a scheduler abstraction representing objects that
walk along task graphs and dispatch the tasks between
available computational units.

These abstractions are modelized with C++ concepts
(defined in §II-A). This approach enables to write abstract
algorithms with abstract objects with specific behaviours.
Behaviours can be implemented with various technologies
more or less efficient with respect to the hardware on
which the application is executed. The choice of the
implementation can be done at compile time for a specic
hardware architecture, or at runtime for general multi-
platform application.

A particular attention has been paid in the design of
the architecture to have a non intrusive solution in order
to facilitate the migration of legacy code, to enable the
reusability of existing classes or functions and to limit the
impacts on the existing application architecture. The purpose
is to be able to select specific parts of an existing code, for
example some parts which a great amount of independant
works, then to enhance them by introducing multi-core or
gpu optimisation without having to modify the whole of the
code.

1) Runtime System Architecture: The proposed Runtime
System architecture, illustrated in figure 1 is quite standard:

• Computation algorithms implemented by user free
functions or classes are encapsulated in Tasks objects,
managed by a centralized task manager ;

• The pieces of data processed by the task objects,
represented by user data classes are encapsulated in
data handler objects, managed by a centralized data
manager ;

• The associations between tasks and the processed data
handlers are managed by DataArg objects;

Figure 1. Runtime system architecture
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Figure 2. Executing model

• Tasks are organized in DAGs and processed by sched-
uler objects that dispatch them on devices to run them
with executing drivers.

The executing model is illustrated in figure 2:
• A Scheduler object processes a DAG of tasks belonging

to a centralized task manger;
• Task objects which are ready to be executed are pushed

back in a task pool;
• The scheduler object dispatches ready tasks on avail-

able computation devices, with respect to a given
strategy;

• Tasks objects are executed on a target device by a driver
object, then they are notified once their execution is
finished;

• A DAG is completely processed once the task pool is
empty.

2) Task management: The task management of
our Runtime System Model is modelized with the
class TaskMng described in listing 1. The sub type
TaskMng::ITask is an interface class specifying the
requirements for task implementation. TaskMng::ITask
pointers are registered in a TaskMng object that associates
them to an unique integer identifier uid. Tasks are managed
in a centralized collection of tasks and dependencies
between tasks are created with their uid. The base
class TaskMng::BaseTask in listing 3 refines the



TaskMng::ITask interface to manage a collection of
uids of children tasks depending of the current task. Thus a
Directed Acyclic Graph (DAG) (figure 3) is represented by
a root task, and walking along it then consists in iterating
recursively on each task and on its children.

Listing 1. TaskMng class

c l a s s TaskMng {
p u b l i c :

t y p e d e f i n t u i d t y p e ;
s t a t i c c o n s t i n t u n d e f i n e d u i d = −1 ;
c l a s s ITask ;
TaskMng(){}
v i r t u a l ˜ TaskMng(){}
i n t addNew ( ITask∗ t a s k ) ;
vo id c l e a r ( ) ;
t e m p l a t e<typename Schedu le rT>
vo id run ( S c h e d u l e r T& s c h e d u l e r , s t d : : v e c t o r< i n t > c o n s t& t a s k l i s t ) ;
};

Listing 2. Task class interface

c l a s s TaskMng : : ITask
{
p u b l i c :

ITask ( ) : m uid ( TaskMng : : u n d e f i n e d u i d ){}
v i r t u a l ˜ ITask ( ) {}
u i d t y p e g e t U id ( ) c o n s t {

r e t u r n m uid ;
}
v i r t u a l vo id compute ( Ta rge tType& type , TaskPoolType& queue ) = 0 ;
v i r t u a l vo id compute ( Ta rge tType& t y p e ) = 0 ;

p r o t e c t e d :
u i d t y p e m uid ;

} ;

Listing 3. Task class interface

c l a s s TaskMng : : BaseTask : p u b l i c TaskMng : : ITask
{
p u b l i c :

BaseTask ( ) ;
v i r t u a l ˜ BaseTask ( ) ;
vo id ad d C h i l d ( ITask∗ c h i l d ) ;
vo id c l e a r C h i l d r e n ( ) ;
vo id n o t i f y C h i l d r e n ( TaskPoolType& queue ) ;
vo id n o t i f y ( ) ;
boo l i sReady ( ) c o n s t ;
};

The Task concept enables to implement a piece of algo-
rithm for different kinds of target devices. A specific type of
target device, or computational unit is identified by a unique
Target label. Task instances are managed by a TaskMng
that associates them to an unique id that can be used to
create dependencies between tasks. Each task manages a
list of children tasks. Directed Acyclic Graphs (DAGs) can
be created with task dependencies. They have one root task.
Task dependencies are managed by task unique id. To ensure
graphs to be acyclic, tasks can only be dependent on an
existing task with a lower unique id. A task can have various
implementations. They are associated to a Target attribute
representing the type of computational unit on which they
should be used.

3) Data management: Our runtime system model is
based on a centralized data management layer aimed to deal
with:

• the data migration between heterogeneous memory
units;

• an efficient data coherency management to optimize
data transfer between remote memory and local mem-
ory;

Example of Direct Acyclic Graph
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Figure 3. Example of directed acyclic graph

• the concurrency of tasks accessing to shared data.
Our data management is based on the DataMng and

DataHandler classes (listing 9). DataHandler objects
represent pieces of data processed by tasks. They are
managed by a DataMng object which has a create
member function to instanciate them. DataHandler
objects have a unique DataUidType identifier uid. The
DataArgs class is a collection of
std::pair<DataHandler::uid_type,eAccessMode>
where AccessMode is an enum type with the following
values W, R or RW. The DataHandler class provides a
lock, unlock service to prevent data access concurrency:

• a task can be executed only if all its associated data
handlers are unlocked ;

• when a task is executed, the DataHandlers associated
with a W or RW mode are locked during execution and
unlocked after.

A piece of data can have multiple representations on each
device local memory. The coherency of all representations
is managed with a timestamp DataHandler service. When a
piece of data is modified, the timestamp is incremented. A
representation is valid only if its timestamp is up to date.
When a task is executed on a specific target device, the local
data representation is updated only if needed, thus avoiding
unuseful data transfer between different local memories.

4) Task dependencies: Task dependencies can be created
in three ways:

• Explicit task dependencies is based on task uids.
The addChild member function enables to create
dependencies between tasks. Only a task with a lower
uid can be the parent of another one, thus ensuring that
the created graph is acyclic;

• Logical tag dependencies, based on task tags create
dependencies between a group of tasks with a specific
tag and another group of tasks with another specific
tag;

• Implicit data driven dependencies is based on the se-
quential consistency of the DAG building order. When
a task is registered, if the DataHandler access is in:
– RW or W mode, then the task implicitly depends

on all tasks with a lower uid accessing that same
DataHandler in R or RW mode,



– R or RW mode, then the task implicitly depends on
the last task accessing that data in RW or W mode.

Once a task is executed, all its children tasks are notified.
Each task manages a counter representing the number of
parent tasks. When a task is notified, this counter is decre-
mented . A task is ready when its parent counter is equal to
zero and when all its dependent data handlers are unlocked.
Its uid is then put in the queue of ready tasks managed by
the scheduler that processes the DAG.

5) Scheduling and executing model: On heterogeneous
architectures, the parallelism is based on the distribution
of tasks on available computation units. The performance
of the global execution depends a lot on the stategy used
to launch independent tasks. It is well known that there is
not a unique nor a best scheduling policy. The performance
depends on both the algorithm and the hardware architec-
ture. To implement various scheduling solutions adapted to
different algorithms and types of architecture, we propose
a Scheduler concept defining the set of requirements for
scheduler types to represent scheduling models. The purpose
of objects of such a type is to walk along task DAGs,
to select and execute independent tasks on the available
computation units, with respect to a given strategy. The
principles for a scheduler object are:

1) to manage a pool of ready tasks (tasks which all parent
tasks are finished and all datahandlers of its DataArgs
attribut are unlocked);

2) to distribute the ready tasks on the different available
computation units following a given scheduling stategy;

3) to notify the children tasks of a task once the task
execution is finished;

4) to push back tasks that get ready in the pool of ready
tasks.

The TaskPoolConcept defines the behaviour that must
implement a type representing a TaskPool, that is to say
the possibility to push back new ready tasks and to grab
tasks to execute.

Listing 4. TaskPool
c l a s s TaskPoo lConcep t
{
p u b l i c :

t e m p l a t e<typename TaskT>
vo id pushBack ( TaskT : : u i d t y p e u i d ) ;

t e m p l a t e<typename TaskT , typename TargetT>
typename Task : : p t r t y p e grabNewTask ( Ta rge tT c o n s t& t a r g e t ) ;

boo l i sEmpty ( ) c o n s t ;
};

A coarse grain parallelism strategy consists in executing
the different independent ready tasks in parallel on the
available computation units. We have implemented various
schedulers like the StdScheduler, the TBBScheduler
and PoolThreadScheduler described in §II-C7

Parallelism can be managed at a finer grain size with
concepts like the ForkJoin and the Pipeline concepts.

ForkJoin: On multi-core architecture, a collection of
equivalent tasks can be executed efficiently with technolgies
like TBB, OpenMP, Posix threads. The ForkJoin concept
(figure 4) consists in creating a DAG macro task node which
holds a collection of tasks. When this node is ready, the
collection of nodes is processed by a ForkJoin Driver
in parallel. The macro task node is finished when all its
children tasks are finished. The ForkJoin Driver is a
concept defining the requirement for the types of objects that
implement the fork-join behaviour with different technolo-
gies or libraries like TBB, Boost.Thread or Pthread.

Listing 5. Fork-Join driver concept
c l a s s F o r k J o i n D r i v e r C o n c e p t
{
p u b l i c :

t e m p l a t e<typename TaskT , typename TargetT , typename QueueT>
vo id e x e c F o r k J o i n ( s t d : : v e c t o r< typename TaskP t rT : : p t r t y p e > c o n s t& t a s k s ,

s t d : : v e c t o r< typename TaskP t rT : : u i d t y p e > c o n s t& u ids ,
Ta rge tT& t a r g e t ,
QueueT& queue ) ;

t e m p l a t e<typename TaskT , typename TargetT>
vo id e x e c F o r k J o i n ( s t d : : v e c t o r< typename TaskP t rT : : p t r t y p e > c o n s t& t a s k s ,

s t d : : v e c t o r< typename TaskP t rT : : u i d t y p e > c o n s t& u ids ,
Ta rge tT& t a r g e t ) ;

};

Pipeline: On vectorial device or accelerator boards,
the Pipeline concept (figure 4) consists in executing a
sequence of tasks (each task depending on its previous
one) with a specific internal structure of instructions. The
Pipeline Driver is a concept defining the requirement
for the types of objects implementing the pipeline behaviour.
These objects are aware of the internal structure of the tasks
and execute them on the computation device in a optimized
way often with a thin grain size parallelism. This approach
is interesting for new GPU hardwares which can execute
concurrent kernels. It enables to implement optimized al-
gorithms with streams and asynchrone execution flows that
improve the occupancy of device ressources and lead then to
better performance. For instance, for the computation of the
basis functions of the multiscale model, we illustrate in §III
how the flow of linear system resolutions can be executed
efficiently on GPU device with the GPUAlgebraFramework
layer.

Listing 6. pipeline driver concept
c l a s s F o r k J o i n D r i v e r C o n c e p t
{
p u b l i c :

t e m p l a t e<typename TaskT , typename TargetT , typename QueueT>
vo id e x e c P i p e l i n e ( s t d : : v e c t o r< typename TaskP t rT : : p t r t y p e > c o n s t& t a s k s ,

s t d : : v e c t o r< typename TaskP t rT : : u i d t y p e > c o n s t& u ids ,
Ta rge tT& t a r g e t ,
QueueT& queue ) ;

t e m p l a t e<typename TaskT , typename TargetT>
vo id e x e c P i p e l i n e ( s t d : : v e c t o r< typename TaskP t rT : : p t r t y p e > c o n s t& t a s k s ,

s t d : : v e c t o r< typename TaskP t rT : : u i d t y p e > c o n s t& u ids ,
Ta rge tT& t a r g e t ) ;

};

Asynchronism management: On an architecture with
heterogeneous memories and computation units, it is im-
portant to provide enough work to all available computation
units and to reduce the latency due to the cost of data transfer
between memories. The Asynchronism mechanism is a key
element for such issues. The classes class AsynchTask
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and class Wait parametrized by the types TaskT and
DriverT implement the asynchronous behaviour:

• the AsynchTask<DriverT,TaskT> is a task node
that executes asynchronously its child task of type
TaskT;

• the Wait<AsynchTaskT> is a task node that waits
for the end of the execution the child task of the
previous node then notifies the children of this task.

The Driver concept specifies the requirement of the type
of objects that implement the asynchronous behaviour. This
behaviour can be easily implemented with threads. The
child task is executed in a thread. The end of the execution
corresponds to the end of the thread. For GPU device, this
behaviour can be implemented using a stream on which is
executed an asynchrounous kernel. The wait function is
implemented with a synchronisation on the device.

The asynchronous mechanism is interesting to implement
data prefetching on device with remote memory. Prefetch
task nodes can be inserted in the DAG to load asyn-
chronously data on GPU device so that they are available
when the computational task is ready to run.

Listing 7. Data management
t e m p l a t e<typename DriverT , typename TaskT>
c l a s s AsynchTask : p u b l i c TaskMng : : BaseTask
{
p u b l i c :

t y p e d e f TaskMng : : BaseTask BaseType ;
AsynchTask ( Dr ive rT& d r i v e r , TaskT& t a s k ) ;
v i r t u a l ˜ AsynchTask ( ) ;
v i r t u a l vo id w a i t ( Ta rge tType& type , TaskPoolType& queue ) ;
v i r t u a l vo id n o t i f y ( ) ;
v i r t u a l boo l i sReady ( ) c o n s t ;
vo id compute ( Ta rge tType& t y p e ) ;
vo id compute ( Ta rge tType& type , TaskPoolType& queue ) ;
vo id f i n a l i z e ( Ta rge tType& type , TaskPoolType& queue ) ;

p r i v a t e :
TaskT& m task ;
};

t e m p l a t e<typename AsynchTaskT>
c l a s s Wait : p u b l i c TaskMng : : BaseTask
{
p u b l i c :

t y p e d e f TaskMng : : BaseTask BaseType ;
Wait ( AsynchTaskT& p a r e n t ) ;
v i r t u a l ˜ Wait ( ) ;
vo id compute ( Ta rge tType& type , TaskPoolType& queue ) ;
vo id compute ( Ta rge tType& t y p e ) ;
vo id f i n a l i z e ( Ta rge tType& type , TaskPoolType& queue ) ;

p r i v a t e :
AsynchTaskT& m paren t ;
} ;

6) Example of application of the runtime system: With
our runtime system abstractions, listing 8 illustrates how to
write a simple program adding two vectors, which can be
executed on various devices.

Listing 8. Simple vector addition program
c l a s s AxpyTask {

vo id computeCPU ( Args c o n s t& a r g s ) {
a u t o x c o n s t& a r g s . ge t<VectorType>( ’ x ’ ) . impl<t a g : : cpu >();
a u t o y& a r g s . ge t<VectorType>( ’ y ’ ) . impl<t a g : : cpu >();
SAXPY( x . s i z e ( ) , 1 . 0 , x . d a t a P t r ( ) , 1 , y . d a t a P t r ( ) , 1 ) ;
}
vo id computeGPU ( Args c o n s t& a r g s ) {

a u t o x c o n s t& a r g s . ge t<v e c t o r t y p e >( ’ x ’ ) . impl<t a g : : gpu >();
a u t o y& a r g s . ge t<v e c t o r t y p e >( ’ y ’ ) . impl<t a g : : gpu >();
c u b l a s S a x p y ( x . s i z e ( ) , 1 . 0 , x . d a t a P t r ( ) , 1 , y . d a t a P t r ( ) , 1 ) ;
c u d a T h r e a d S y n c h r o n i z e ( ) ;

}
} ;

i n t main ( i n t a rgc , c h a r ∗∗a rgv ) {
f l o a t vec x [N] , vec y [N ] ;

/∗ ( . . . ) ∗/
/ /
/ / DATA MANAGEMENT SET UP
DataMng data mng ;
VectorType x ;
VectorType y ;
Da taHand le r∗ x h a n d l e r = data mng . c r e a t e<VectorType>(&x ) ;
Da taHand le r∗ y h a n d l e r = data mng . c r e a t e<VectorType>(&y ) ;

/ /
/ / TASK MANAGEMENT SET UP
TaskMng task mng ;
/∗ ( . . . ) ∗/
AxpyTask op ;
TaskMng : : Task<AxpyTask>∗ t a s k = new TaskMng : : Task<AxpyTask>(op ) ;
t a s k−>s e t<t a g : : cpu>(&AxpyTask : : computeCPU ) ;
t a s k−>s e t<t a g : : gpu>(&AxpyTask : : computeGPU ) ;
t a s k−>a r g s ( ) . add ( ’ x ’ , x h a n d l e r , ArgType : : mode : : R) ;
t a s k−>a r g s ( ) . add ( ’ y ’ , y h a n d l e r , ArgType : : mode : :RW) ;

i n t u i d = task mng . addNew ( t a s k ) ;
t a s k l i s t . push back ( u i d ) ;

/ /
/ / EXECUTION
Schedu l e rType s c h e d u l e r ;
task mng . run ( s c h e d u l e r , t a s k l i s t ) ;

}

7) Elements of implementation of different concepts:
Data and task management concepts: The implementa-

tion of data and task management is based on the following
principles:

• User Data are implemented by the mean of user C++
classes or structures;

• User algorithms are implemented by the means of user
free functions or member functions of user C++ classes.

We have implemented DataHandler as a class that
encapsulate any user classes or structures and which
provides functions to retrieve the original user data
structure, to lock or unlock the user data.

The DataMng is a centralized class that manages a
collection of DataHandler objects and their integer
unique identifier. This class enables to access any user data
by the means of its unique identifier.

Listing 9. Data management

t y p e d e f enum {R ,W,RW, Undef ined} eAccessModeType ;

c l a s s Da taHand le r
{
p u b l i c :

t y p e d e f i n t u i d t y p e ;
s t a t i c c o n s t i n t n u l l u i d = −1 ;
Da taHand le r ( u i d t y p e u i d = n u l l u i d ) ;
v i r t u a l ˜ Da taHand le r ( ) ;



u i d t y p e g e t U id ( ) c o n s t ;
t e m p l a t e<typename DataT>
DataT∗ g e t ( ) c o n s t ;
vo id l o c k ( ) ;
vo id u n lo ck ( ) ;
boo l i s L o c k e d ( ) c o n s t ;
};

c l a s s DataMng
{
p u b l i c :

t y p e d e f Da taHand le r∗ D a t a H a n d l e r P t r T y p e ;
DataMng ( ) ;
v i r t u a l ˜ DataMng ( ) ;
t e m p l a t e<typename DataT>
DataHand le r∗ c r e a t e ( ) ;
Da t aHand le r∗ g e t D a t a ( i n t u i d ) c o n s t ;
};

Tasks are implemented with the classes
TaskMng::Task0 and class TaskMng::Task
(listing 10) that encapsulate any user free function
or user class and member function, stored in a
boost::function attribute. They implement the
TaskMng::ITask interface that enables any scheduler
to execute task objects on any target computation unit.
They have a set(<target>,<function>) member
function to define the implementation of the task for each
target device.

Listing 10. Task class inplementation
c l a s s TaskMng : : Task0 : p u b l i c TaskMng : : BaseTask
{
p u b l i c :

t y p e d e f ITask : : Ta rge tType Targe tType ;
t y p e d e f b o o s t : : f u n c t i o n 1<void ,

DataArgs c o n s t&> FuncType ;
t y p e d e f s t d : : map<Targe tType , FuncType> FuncMapType ;
t y p e d e f typename FuncMapType : : i t e r a t o r F u n c I t e r T y p e ;
Task0 ( ) ;
v i r t u a l ˜ Task0 ( ) ;
vo id s e t ( Ta rge tType type , FuncType func ) ;
vo id compute ( Ta rge tType& type , TaskPoolType& queue ) ;
vo id compute ( Ta rge tType& t y p e ) ;

} ;

t e m p l a t e<typename ComputerT>
c l a s s TaskMng : : Task : p u b l i c TaskMng : : BaseTask
{
p u b l i c :

t y p e d e f ITask : : Ta rge tType Targe tType ;
t y p e d e f b o o s t : : f u n c t i o n 2<void ,

ComputerT∗ ,
DataArgs c o n s t&> FuncType ;

t y p e d e f s t d : : map<Targe tType , FuncType> FuncMapType ;
t y p e d e f typename FuncMapType : : i t e r a t o r F u n c I t e r T y p e ;
Task ( ComputerT∗ compute r ) ;
v i r t u a l ˜ Task ( ) ;
vo id s e t ( Ta rge tType type , FuncType func ) ;
vo id compute ( Ta rge tType& type , TaskPoolType& queue ) ;
vo id compute ( Ta rge tType& t y p e ) ;

} ;

Task execution: When a task is executed, data user
structures are recovered with a DataArgs object that
stores data handlers and their access mode. This data can
be locked if it is accessed in a write mode when the user
algorithm is applied to it. Modified data is unlocked at the
end of the algorithm execution.

TaskPool concept: We have implemented the
TaskPoolConcept with a simple parametrized
class template<TaskMng> class TaskPool with
two attributes: m_uids a collection of task uid and m_mng
a reference to the task manager. The member function
pushBack(TaskMng::ITask::uid_type uid)
feeds the collection of ready tasks. The
Task::ptr_type grabNewTask(<target>)

grabs a uid from m_uids and returns the corresponding
task with m_mng.

Scheduler concept: To implement a scheduler class,
one has to implement the
exec(<tasks>,<list>) function that gives access to
a collection of tasks and a list of tasks, roots of different
DAGs. Walking along these DAGs, the scheduler manages a
pool of ready tasks: the scheduler grabs new tasks to execute,
children tasks are notified at the end of execution and feed
the task pool when they are ready. Some Driver objects
can be used to execute tasks on specific devices, to modelize
different parallel behaviours, to give access for example to a
pool of threads that grab tasks to be executed in the pool of
ready tasks. We have implemented the following scheduler
types:

• the StdScheduler is a simple sequential scheduler
executing the tasks of a TaskPool on a given target
device;

• the TBBScheduler is a parallel scheduler for
multi-core architecture implemented with the
parallel_do functionnality of the TBB library;

• the PoolThreadScheduler is a parallel scheduler
based on a pool of threads dispatched on several
cores of the multi-core nodes, implemented with the
Boost.Thread library. Each thread is associated to a
physical core with an affinity, and dedicated to executed
tasks on this specific core or on an accelerator device.
The scheduler dispatches the tasks of the task pool on
the threads which are starving.
ForkJoinDriver implementation: We have developped

for multi-core architectures three implementations conform-
ing to this concept:

• the TBBDriver is a multi-thread implementation us-
ing the parallel_for algorithm of the TBB library;

• the BTHDriver is a multi-thread implementation
based on a pool of threads implemented with the
Boost.Thread library;

• the PTHDriver is a multi-thread implementation
based on a pool of threads written with the native posix
thread library.

III. APPLICATION TO MULTISCALE BASIS FUNCTIONS
CONSTRUCTION

We have validated the RunTime System Model presented
in §II implementing the basis function computation of a
multiscale method. In [9], an interesting overview of such
methods is done by by Kippe V., Aarnes J. E. and Lie K.
A. Most of these methods are based on the computation
of independant basis functions defined by partial derivated
equations which leads to solve independant linear systems.
The objectif here is to propose a generic way to imple-
ment these computations for various hardware configurations
and various implementations of the runtime system using



muti-thread technology with TBB[6], Boost.Thread[7] or
Posix.Thread library for multi-core platform or with the
GPUAlgebraFramework layer, a library written with Cuda
or OpenCL for node with GP-GPU accelerators aimed
to perform efficiently on GP-GPUs, collections of small
independant matrix-vector operations.

We have implemented a BasisFunction class with a
standard implementation for CPU and a GPU implementa-
tion based on the GPUAlgebraFramework layer for GP-GPU
devices. The algorithm to compute all the basis functions has
been written as in listing 11 with the Task, ForkJoin and
Pipeline concept, and with various fork-join driver im-
plementations based on the TBB, Boost.Thread, pThread and
with the pipeline driver based on the GPUAlgebraFrame-
work library.

Listing 11. Basis computation algorithm
t e m p l a t e<typename Schedu le rT ,

typename TaskMngT ,
typename F o r k J o i n D r i v e r T ,
typename P i p e l i n e D r i v e r T ,
typename DataMngT>

vo id compu teBas i s ( s t d : : v e c t o r<B a s i s F u n c t i o n∗>& b a s i s )
{

t y p e d e f typename TaskMngT : : u i d t y p e u i d t y p e ;
t y p e d e f typename TaskMngT : : ForkJo inTask<F o r k J o i n D r i v e r T> F o r k J o i n T a s k ;
t y p e d e f typename TaskMngT : : P i p e l i n e T a s k<P i p e l i n e D r i v e r T> P i p e l i n e T a s k ;
t y p e d e f typename TaskMngT : : TaskNode TaskNode ;
t y p e d e f typename TaskMngT : : Task<Bas i s> TaskType ;

/ / DATA MANAGEMENT
DataMng data mng ;
DataHandle rType∗ s o l v e r h a n d l e r = data mng . getNewData ( ) ;
s o l v e r h a n d l e r−>s e t<I L i n e a r S o l v e r >(b a s i s s o l v e r ) ;
Da taHandle rType∗ k h a n d l e r = data mng . getNewData ( ) ;
k h a n d l e r−>s e t<V a r i a b l e C e l l R e a l c o n s t>(&k ) ;

/ / TASK MANAGEMENT
s t d : : v e c t o r< u i d t y p e > dag ;
TaskMng task mng ;

/ / DEFINE PARALLEL FORKJOIN FOR MULTICORE ARCHITECTURE
F o r k J o i n D r i v e r T f o r k j o i n ( /∗ . . . ∗/ ) ;
F o r k J o i n T a s k∗ f o r k j o i n t a s k =

new F o r k J o i n T a s k ( f o r k j o i n , task mng . g e t T a s k s ( ) ) ;
u i d t y p e f k u i d = m task mng . addNew ( f o r k j o i n t a s k ) ;

/ / DEFINE PIPELINE FOR GPU ARCHITECTURE
P i p e l i n e D r i v e r T p i p e l i n e ( /∗ . . . ∗/ ) ;
P i p e l i n e T a s k∗ p i p e l i n e t a s k =

new P i p e l i n e T a s k ( p i p e l i n e , task mng . g e t T a s k s ( ) ) ;
u i d t y p e p i p e l i n e u i d = m task mng . addNew ( f o r k j o i n t a s k ) ;

/ / DEFINE A DAG ROOT NODE WITH CPU AND GPU IMPL
TaskNode∗ r o o t = new TaskNode ( ) ;
r o o t−>s e t ( ” cpu ” , f k u i d ) ;
r o o t−>s e t ( ” gpu ” , p i p e l i n e u i d ) ;
u i d t y p e r o o t u i d = task mng . addNew ( r o o t ) ;

/ / ADD ROOT TASK LIST AS A DAG ROOT NODE
dag . push back ( r o o t u i d ) ;

/ / DEFINE BASIS TASKS AND TASK DEPENDANCIES
s t d : : f o r e a c h ( a u t o i b a s i s : b a s i s )
{

TaskType∗ t a s k = new TaskType (∗ i b a s i s ) ;
t a s k−>a r g s ( ) . add ( ” S o l v e r ” , Da taHandle rType : : R , s o l v e r h a n d l e r ) ;
t a s k−>a r g s ( ) . add ( ”K” , DataHandle rType : : R , k h a n d l e r ) ;
typename TaskType : : FuncType f cpu = &B a s i s F u n c t i o n T y p e : : computeCPU ;
t a s k−>s e t ( ” cpu ” , f cpu ) ;
t a s k−>s e t ( ” gpu ” , f gpu ) ;
I n t e g e r u i d = m task mng . addNew ( t a s k ) ;
f o r k j o i n t a s k−>add ( u i d ) ;
p i p e l i n e t a s k−>add ( u i d ) ;

}

/ / EXECUTE THE DAG
S c h e d u l e r T s c h e d u l e r ;
task mng . run ( s c h e d u l e r , dag ) ;

}

IV. PERFORMANCE RESULTS

In this section we present some performance results of
the basis functions computation of the multiscale method

(a) Server 1

(b) Server 2

Figure 5. Servers architecture

implemented with our RunTime System Model on a bench-
mark of the 2D version of the SPE10 study case inspired
from the benchmark described in [8]. We compare different
implementations and solutions run on various hardware con-
figurations. We focus on the test case with a 65x220x1 fine
mesh and a 10x10x1 coarse mesh which leads to solve 200
linear systems of approximatively 1300 rows. We apply the
reducing bandwidth renumbering algorithm to all matrices
and their bandwidth is lower than 65 for all them.

A. Hardware descriptions

The benchmark test cases have been run on two servers
(figure 5):

• the first one, Server 1 is a Bull novascale server with
a SMP node 2 quad-core intel Xeon E5420 GPU tesla
server S1070 with 4 GPU tesla T10 with 30 streaming
processors with 8 cores, 240 computation units per
processor, total of 960 for the server. 16 GB central
memory;

• the second, Server 2 is a server with a SMP node with
2 octo-core processors Intel Xeon E5-2680 linked by
a NUMA memory and with 2 GPUs Tesla C2070 per
processor with a fermi architecture.

B. Benchmark metrics

In our benchmark we focus on the execution time in
seconds of the computation of all the basis functions of the
study case. This computation time includes for each basis
function, the time to discretize the local PDE problem, to
build the algebraic linear system, to solve it with a linear



solver and to finalize the computation of the basis functions
updating them with the solution of the linear system.

To analyze in detail the different implementations, we also
separately measure in seconds:

• tstart the time to define basis matrix structures;
• tcompute the time to compute the linear systems to

solve;
• tsinit the setup time of the solver;
• tsolver the time to solve all the linear systems;
• tfinalize the time to get the linear solution and finalize

the basis function computation;
• tbasis the global time to compute all the basis functions.

The performance results are organized in tables and
graphics containing different times in seconds which can
be compared to the time of a reference execution on one
core.

C. Results of various implementations executed on various
hardware configurations

Multithread forkjoin and GPU pipeline implementation:
In table 6 and figure 7, we compare the performances of:

• the forkjoin concept implementations TBB, BTH and
PTH using respectively the TBBDriver, BTHDriver
and PTHDriver drivers which are all thread based
implementations for multi-core configuration.

• the pipeline concept implementation based on the
GPUAlgebraFramework.

We study the following hardware configurations:

• cpu, the reference configuration with 1 core;
• gpu, configuration with 1 core, 1 gpu;
• n x p core, configuration with n cpus and p cores

per cpu.

In figure 7, we compare three implentations of the fork-
join behaviour with threads. The analysis of the results
shows that they all enable us to improve the efficiency
of the basis function computation taking advantage of the
multi-core architecture. The PTH implementation, directly
written by hand with Posix threads is the most efficient
while the PTH one implemented with Boost threads the less.
The TBB version efficency is between the two others. In the
implementation of the pipeline behaviour for GPU, we can
notice that only the solver part is really accelerated on the
GPU. Nevertheless it enables to improve the efficiency of
the basis function computation with respect to the standard
version on one core. Finally all these results prove that
we can handle various hardware architectures, with one
or several cores, with or without several GPGPUs, with a
unified code. That illustrates the capacity of the runtime
system to hide the hardware complexity in a numerical
algorithm.

Multi-core multi-GPU configuration: For multi-core
and multi-GPU configuration, we study the performance

NbThreads 1 2 4 8 16

TBB 1.09 0.62 0.33 0.22
Boost Thread 1.17 0.62 0.37 0.26
Posix Thread 1.05 0.58 0.35 0.18
(a) Basis functions computation time vs number of threads

opt tstart tcompute tsinit tsolver tfinalize tbasis

cpu 1.73 0.36 0. 0.68 0.022 2.80
gpu 1.79 0.39 1.36 0.01 0.024 3.59

(b) Basis computation phase time for various solver configuration

Figure 6. Server 2: Multi-thread and GPU implementation results
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Figure 7. Performance analysis for multi-core configuration and GPU
configurations

of a mixed MPI-GPU implementation with two levels of
parallelism:

• the first level is a MPI based implementation for
distributed memory;

• the second level is based on the
GPUAlgebraFramework to solve the linear
systems on GP-GPU devices.

We test different hardware configurations with different
number of cores (1,2,4,8 and 16) sharing 1, 2 or 4 GPUs. In
table 8 and figure 10 (respectively table 9 and figure 11) we
present the performance results for the server 1 (respectively
server 2).

The results show that the runtime system enable us to
easily compare various hardware configurations: configu-
rations where gpus are shared or not by cpus and cores,
configurations with different strategies of connexion between
gpus and cpus.

Analyzing the results of the different benchmarks, we
have different levels of conclusions. the first level concerns
the capacity of the Runtime system to hide the hardware
complexity in a numerical algorithm. These benchmarks
prove that we can handle various hardware architectures,
with one or several cores, with or without several GPG-
PUs, with a unified code. The second level concerns the
extensibility of the Runtime system. We could compare
competing technologies with different implementations of
our abstract concepts with few impacts on the numerical
code. The third level concerns the capability of the Runtime
system to really improve the performance of the numerical
algorithm using the different levels of parallelism provided
by hybrid architecture. With all the technologies tested



ncpu 1 gpu 2 gpus 4 gpus

1 1.95 1.95 1.95
2 1.22 1.04 1.04
4 0.98 0.76 0.66
8 0.63 0.37 0.45

(a) Computation times vs number of cpus and
gpus

ngpu 2x2 cores 1x4 cores 1x8 cores

1 1.06 1.05 0.51
2 0.76 0.76 0.37
4 0.66 0.66 0.40

(b) Computation times vs number of cpus, cores per cpu
and gpus

Figure 8. Server 1: multi-cores multi-gpu configuration

ncpu 1 gpu 2 gpus

1 0.75 0.75
2 0.44 0.38
4 0.25 0.24
8 0.12 0.12
16 0.05 0.06

(a) Computation times vs number
of cpus and gpus

n x pe 2x2 1x4 2x4 1x8

1 gpu 0.53 0.67 0.57 0.50
2 gpu 0.46 0.45 0.37 0.37

(b) Computation times vs number n of cpus, p
cores per cpu and gpus

Figure 9. Server 2: multi-cores multi-gpu configuration
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Figure 10. Server 1: multi-cores multi-gpu configuration
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Figure 11. Server 2: multi-cores multi-gpu configuration

the performance of the computation has been improved
compared to one computation executed on one core. The
last level of conclusion is the fact that the runtime system
enables to benchmark in a simply way the different hardware
configurations parameters like the number of cores, the
number of GPUs, the number of streams, the fact that a
GPU is shared or not by several cores.

V. CONCLUSIONS AND PERSPECTIVE

We have developped an abstract runtime system that
enables to develop efficient numerical algorithms indepen-
dantly of the hardware configuration. The results we have
obtained implementing multi-scale methods with this run-
time system have prove the interest of our approach to
handle the variety of hardware technology with few impacts
on the numerical layer. Nevertheless the solutions we have
implemented are still to simple to get the maximum of the
performance that can provide new heterogeneous architec-
tures. We need to implement our different abstractions with
advanced solutions as those existing in research runtime
system solutions like StarPU or XKaapi. We plan also
to benchmark different mechanisms that help to optimize
data transfert between main memory and local accelerator
memories and to measure the overhead of each solution with
respect to the parallism grain sizes.
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